Package: matsbyname (via r-universe)

September 10, 2024

Type Package

Title An Implementation of Matrix Mathematics that Respects Row and
Column Names

Version 0.6.10
Date 2024-02-12
Maintainer Matthew Heun <matthew.heun@me.com>

Description An implementation of matrix mathematics wherein operations
are performed * by name."

License MIT + file LICENSE

Language en-US

Encoding UTF-8

RoxygenNote 7.3.1

Roxygen list(markdown = TRUE)
Config/testthat/edition 3
Config/testthat/parallel true
Config/testthat/start-first Binary, Utilities, Unary

Imports assertthat, dplyr, lifecycle, Matrix, magrittr, matrixcalc,
methods, purrr, RCLabels, rlang, tibble

Suggests bench, covr, Hmisc, knitr, matsindf, rmarkdown, spelling,
testthat (>= 3.0.0), tidyr

VignetteBuilder knitr

URL https://github.com/MatthewHeun/matsbyname,
https://matthewheun.github.io/matsbyname/

BugReports https://github.com/MatthewHeun/matsbyname/issues
Repository https://matthewheun.r-universe.dev

RemoteUrl https://github.com/matthewheun/matsbyname

RemoteRef HEAD

RemoteSha 20197d59f2c44£86c6070b1caffd9e027ec9dc8b

https://github.com/MatthewHeun/matsbyname
https://matthewheun.github.io/matsbyname/
https://github.com/MatthewHeun/matsbyname/issues

2 Contents

Contents
abs_byname Lo e 4
aggregate_byname L L 4
aggregate_pieces_bynameo e e e 6
aggregate_to_pref_suff byname L 0oL 9
aggregation_map_helpers 10
all_byname e e e 11
and_byname e e 12
any_byname e e 13
binaryapply_byname 13
clean_byname 14
colprods_byname 15
colsums_byname e e e 16
COILYPE . . o o o e e 17
Compare_byName ot e e e e e e e e e e e e e e e 18
complete_and_sOrt L e e e e 19
complete_rows_cols L 20
count_vals_byname L L 22
count_vals_incols_byname oL 23
count_vals_inrows_byname Lo 24
create_colvec_byname 25
create_matrix_byname L. L 26
Create_rowvec_bynameo e e e e e e e 27
cumapply_byname 29
cumprod_byname e e e e e 30
CUmMSUM_bYNAME o vttt e e e e e e e e e e e e 31
difference_byname 32
eigenvalues_byname e e e 33
€Igenvectors_byname e e e e e e 34
elementapply_byname oL 35
equal_byname 36
exp_byname 37
fractionize_byname 37
geometricmean_bynameol 38
getcolnames_byname L e e e e 39
getrownames_byname Lo e e e e 40
getzerorowcolnames_byname oLl e 41
hadamardproduct_byname Lo 41
hatinv_byname 42
hatize_byname 44
identical_byname 45
identize_byname L. e e e e 46
Iminus_byname L e 47
mvert_byname e e e e e e 48
IS.MatriX e e e e e e e e e e e 49
iszero_byname e 50

iIs_matrix_or_ Matrix e e 51

Contents

Index

3

kvec_from_template_byname 51
list_ of TOWS_Or _COIS e 52
logarithmicmean_byname L L 53
logmean e 54
log_byname e e e 55
margin_from_types_byname 56
matricize_byname e e e e 57
Matrix e e e e 58
matrixproduct_byname 60
mean_byname e e e e 61
naryapplylogical_byname 62
naryapply_byname e 63
ncol_byname e 65
NTOW_DYNAME v v v v et v e e e e e e e e e e e e e e e e 66
OFZANIZE_ATZS .« « o o v v e e e e e e e e e e e e e e e e e e 67
POW_byname L. e e 68
prepare_FUNdOts e 68
PIEP_VECIOT_arg o o v v e it e it e e e e e e e e e e 70
prodall_byname e e 71
quotient_byname L. e e e 72
rename_to_piece_byname Lo 73
rename_to_pref_suff byname L. 75
replaceNaN_byname 76
rowprods_byname L e 76
rowsums_byname Lo e e 77
TOWEYPE « o v v v v e i e e e e e e e e e e e e e e e e e 78
SamMeStructure_bynameo i e e e e e e e e e e e e e e 79
selectzerocols_byname 80
selectzerorows_byname Lo e e e 80
select_cols_byname e e 81
select_rowcol_piece_bynameo 83
select_rows_byname e e e 85
setcolnames_byname L. L. e 86
setcoltype e 87
SEtrOWNamesS_byname v v i e e e e e e e e e e e e e e 88
SELTOWEYDE .« . v o v v e e e e e e e e e e e e e e e 89
SOIt_TOWS_COIS o e e e e e 90
sumall_byname L 91
SUM_DYNAME o bttt e e e e e e e e e e e e e e e 92
svd_byname e e e e e e 93
switch_notation_byname L 94
transpose_byname L. 95
triM_TOWS_COIS e e 96
unaryapply_byname 97
VECIOriZe_byname e e e e e e 99
vec_from_store_byname o 100
103

4 aggregate_byname

abs_byname Absolute value of matrix elements

Description

Absolute value of matrix elements

Usage

abs_byname (a)

Arguments

a A matrix or list of matrices.

Value

a with each element replaced by its absolute value.

Examples

abs_byname (1)

abs_byname(-1)

m<- matrix(c(-10,1,1,100), nrow = 2, dimnames = list(paste@("i", 1:2), paste@("c", 1:2))) %>%
setrowtype("Industry”) %>% setcoltype(”Commodity")

m

abs_byname (m)

aggregate_byname Aggregate rows and columns in a matrix

Description

Rows (margin = 1), columns (margin = 2), or both (margin = c(1, 2), the default) are aggregated
according to aggregation_map.

Usage

aggregate_byname(
a,
aggregation_map = NULL,
margin = c(1, 2),
pattern_type = "exact"

aggregate_byname 5

Arguments

a A matrix or list of matrices whose rows or columns are to be aggregated.
aggregation_map
A named list of rows or columns to be aggregated (or NULL). See details.

margin 1, 2, or c(1, 2) for row aggregation, column aggregation, or both. As a string,
margin can be a row or column type. Defaultis c(1, 2).

pattern_type See RCLabels: :make_or_pattern(). Default is "exact".

Details

When aggregation_map is NULL (the default), rows (or columns or both) of same name are aggre-
gated together.

If aggregation_map is not NULL, it must be a named list. The name of each aggregation_map
item is the name of a row or column in output that will contain the specified aggregation. The value
of each item in aggregation_map must be a vector of names of rows or columns in a. The names
in the value are aggregated and inserted into the output with the name of the value. For example
aggregation_map = list(new_row=c("r1", "r2")) will aggregate rows "r1" and "r2", delete
rows "r1" and "r2", and insert a new row whose name is "new_row" and whose value is the sum of
rows "r1" and "r2’.

The values in the aggregation_map are interpreted as regular expressions, and they are escaped
using Hmisc: : escapeRegex () prior to use.

margin can be a string, in which case it is interpreted as a row or column type. If a string margin
does not match a row or column type, a is returned unmodified.

Note that aggregation on one margin only will sort only the aggregated margin, because the other
margin is not guaranteed to have unique names.

Value

A version of a with aggregated rows and/or columns

Examples

library(dplyr)
library(tibble)
m <- matrix(1:9, byrow = TRUE, nrow = 3,
dimnames = list(c("r2", "r1", "r1"), c("c2", "c1", "c1"))) %>%
setrowtype("rows") %>% setcoltype(”cols"”)
Aggregate all rows by establishing an aggregation map (Tam™)
am <- list(new_row = c("r1", "r2"))
aggregate_byname(m, aggregation_map = am, margin = 1)
aggregate_byname() also works with lists and in data frames
ml <- matrix(42, nrow = 1, dimnames = list(c("r1"), c("c1")))
m2 <- matrix(1:4, byrow = TRUE, nrow = 2,
dimnames = list(c(”a", "a"), c("a", "a")))
m3 <- matrix(1:9, byrow = TRUE, nrow = 3,
dimnames = list(c("r2", "r1", "r1"), c("c2", "c1", "c1")))
DF <- tibble(m = list(m1l, m1, ml, m2, m2, m2, m3, m3, m3),
margin = list(1, 2, c(1,2), 1, 2, c(1, 2), 1, 2, c(1, 2))) %%

aggregate_pieces_byname

mutate(
aggregated = aggregate_byname(m, margin = margin),

)
ml
DF$aggregated[[1]1] by rows
DF$aggregated[[2]1] by cols
DF$aggregated[[3]] # by rows and cols
m2
DF$aggregated[[4]1] by rows
DF$aggregated[[5]] # by cols
DF$aggregated[[6]] by rows and cols
m3
DF$aggregated[[7]] # by rows
DF$aggregated[[8]1] by cols
DF$aggregated[[9]1] by rows and cols

aggregate_pieces_byname

Aggregate a matrix by pieces of row and/or column names

Description

Aggregate a matrix (or list of matrices or a column in a matsindf data frame) by pieces of the row

and column names.

Usage

aggregate_pieces_byname (

a,
piece,

margin = list(c(1, 2)),

inf_notation = TRUE,

notation = list(RCLabels::notations_list),
choose_most_specific = FALSE,

prepositions =

list(RCLabels: :prepositions_list),

aggregation_map = NULL,

pattern_type

Arguments

a

piece

margin

= "exact"”

A matrix or list of matrices.

A character string indicating which piece of the row or column names to retain,

one of "noun", "pps", "pref" or "suff", or a preposition, indicating which part of
the row or column name is to be retained.

As a character, the row type or column type to be renamed. As an integer, the
margin to be renamed. Defaultis c(1, 2), meaning that both rows (margin = 1)
and columns (margin = 2) will be renamed.

aggregate_pieces_byname 7

inf_notation A boolean that tells whether to infer notation. Default is TRUE.

notation The notation used for row and column labels. Defaultis 1ist(RCLabels: :notations_list).
The default value is wrapped in a list, because RCLabels: :notations_list is,
itself, a list. See RCLabels.
choose_most_specific
A boolean that indicates whether the most-specific notation will be inferred
when more than one of notation matches a row or column label and allow_multiple
= FALSE. When FALSE, the first matching notation in notations is returned
when allow_multiple = FALSE. Default is FALSE.

prepositions Prepositions that can be used in the row and column label. Defaultis RCLabels: :prepositions_list.
aggregation_map
A named list of rows or columns to be aggregated (or NULL). See details.

pattern_type See RCLabels: :make_or_pattern(). Default is "exact".

Details

This is a convenience function that bundles two others for common use cases: rename_to_piece_byname()
followed by aggregate_byname(). Note that after renaming to the piece, there may be rows

or columns that are identically named. If those identically named names aren’t included in the
aggregation_map, an error will result. So, aggregate_byname() is called twice; first with aggregation_map
= NULL to sweep up any rows or columns that are identically named after renaming and second with
aggregation_map = aggregation_map to sum the desired rows or columns. See examples.

When aggregation_map is NULL (the default), rows (or columns or both) of same name are aggre-
gated together.

If aggregation_map is not NULL, it must be a named list. The name of each aggregation_map
item is the name of a row or column in output that will contain the specified aggregation. The value
of each item in aggregation_map must be a vector of names of rows or columns in a. The names
in the value are aggregated and inserted into the output with the name of the value. For example
aggregation_map = list(new_row=c("r1", "r2")) will aggregate rows "r1" and "r2", delete
rows "rl1" and "r2", and insert a new row whose name is "new_row" and whose value is the sum of
rows "r1" and "r2’.

The values in the aggregation_map are interpreted as regular expressions, and they are escaped
using Hmisc: : escapeRegex () prior to use.

aggregation_map should aggregate by pieces, not by the full, original row and/or column names.

Value

A version of a with rows and/or columns aggregated according to aggregation_map.

Examples

a <- matrix(c(1, 2, 3,
4, 5, 6), nrow = 2, ncol = 3, byrow = TRUE,
dimnames = list(c("a [from b]", "c [from d]"),
c("e [from f]", "g [from h]", "i [from jJ1")))
a %%
aggregate_pieces_byname(piece = "suff"”,

aggregate_pieces_byname

notation = RCLabels::from_notation,
aggregation_map = list(rows = c("b", "d"),
cols = c("h", "i"))
m <- matrix(c(1, 0, O,
0, 1, 1,
@, 1, 1), nrow = 3, ncol = 3, byrow = TRUE,
dimnames = list(c("Gasoline [from 0il refineries]”,
"Electricity [from Main activity producer electricity plants]”,
"Electricity [from Hydrol"),
c("Automobiles”, "LED lamps”, "CFL lamps”))) %>%
setrowtype("Product”) %>% setcoltype("Industry")
mT <- transpose_byname(m)
Aggregate the "Electricity” rows.
aggregate_pieces_byname(m, piece = "noun”, margin = "Product”,
notation = RCLabels::bracket_notation)
Also works in a list.
aggregate_pieces_byname(a = list(m, mT), piece = "noun”,
margin = "Product”,
notation = RCLabels: :bracket_notation)
Use an aggregation map
aggregate_pieces_byname(a = list(m, mT), piece = "noun”,
margin = "Product”,
aggregation_map = list(list(final = c("Electricity”, "Gasoline"))),
notation = RCLabels::bracket_notation)
Also works in a data frame.
df <- tibble::tibble(m = list(m, mT),
pce = "noun”,
mgn = "Product”,
agg_map = list(list(final = c("Electricity”, "Gasoline"))),
notn = list(RCLabels: :bracket_notation)) %>%
dplyr: :mutate(
agg = aggregate_pieces_byname(a = m, piece = pce, margin = mgn,
aggregation_map = agg_map,
notation = notn)
)
df$agg
Works when renaming to the piece results in identical row or col names.
b <- matrix(1:6, nrow = 3, ncol = 2,
dimnames = list(c("a [from b]", "c [from d]", "c [from el"),
c("c1", "c2")))

This aggregation works, because the "c" rows
are aggregated before applying the aggregation_map,
which, itself, does NOT aggregate the "c" rows.
%>%
aggregate_pieces_byname(piece = "noun",
margin = 1,
inf_notation = FALSE,
notation = RCLabels::bracket_notation,
aggregation_map = list(f = c("a", "b")))

T H ¥ H® O

aggregate_to_pref _suff byname 9

aggregate_to_pref_suff_byname
Aggregate a matrix to prefixes or suffixes of row and/or column names

Description

[Superseded] Row and column names are often constructed in the form prefix_start prefix
prefix_end suffix_start suffix suffix_end and described by a notation vector. (See notation_vec().)
This function performs aggregation by prefix or suffix according to a notation vector.

Usage
aggregate_to_pref_suff_byname(
a ’
aggregation_map = NULL,
keep,
margin = c(1, 2),
notation,
pattern_type = "exact"
)
Arguments
a A matrix of list of matrices to be aggregated by prefix or suffix.

aggregation_map
See aggregate_byname().

keep See rename_to_pref_suff_byname()

margin the dimension over which aggregation is to be performed; 1 for rows, 2 for
columns, or c(1, 2) for both.

notation See notation_vec().

pattern_type See aggregate_byname().

Details

This function is a convenience function, as it bundles sequential calls to two helper functions,
rename_to_pref_suff_byname() and aggregate_byname(). All arguments are passed to the
helper functions.

Value

An aggregated version of a.

10 aggregation_map_helpers

Examples

This function is superseded.
Instead, use "aggregate_pieces_byname()".
For example:
m <- matrix((1:9), byrow = TRUE, nrow = 3,
dimnames = list(c("r1 ->b", "r2 ->b", "r3 ->a"), c("c1 ->z", "c2 ->y", "c3 ->y")))
m
aggregate_pieces_byname(m, piece = "pref"”, notation = RCLabels::arrow_notation)
aggregate_pieces_byname(m, piece = "suff"”, notation = RCLabels::arrow_notation)

Original examples:

Aggregation by prefixes does nothing more than rename, because all prefixes are different.
Doing renaming like this (without also aggregating) is potentially dangerous, because
some rows and some columns could end up with same names.
aggregate_to_pref_suff_byname(m, keep = "pref"”, notation = RCLabels::arrow_notation)

Aggregation by suffix reduces the number of rows and columns,

because there are same suffixes in both rows and columns
aggregate_to_pref_suff_byname(m, keep = "suff"”, notation = RCLabels::arrow_notation)

aggregation_map_helpers
Aggregation map conversions

Description

Aggregation is a many-to-few operation where specifics are summed to comprise broader cate-
gories. Examples include "John", "Paul", "George", and "Ringo" aggregated to "Beatles"; and
"Mick", "Keith", "Ronnie", "Bill", and "Charlie" aggregated to "Stones". An aggregation map is a
named list that describes the aggregation to be performed. An aggregation map for the examples
aboveis list(Beatles = c("John", "Paul”, "George", "Ringo"), Stones = c("Mick”, "Keith",
"Ronnie”, "Bill", "Charlie”)) Aggregation maps can be generated from many shapes of data.
These functions assist with translating from different data shapes to aggregation maps.

Usage

agg_table_to_agg_map(.df, few_colname, many_colname)

agg_map_to_agg_table(aggregation_map, few_colname, many_colname)

Arguments
.df A data frame from which an aggregation map is to be extracted.
few_colname The string name of a column in a data frame that corresponds to the "few" ag-

gregated categories.

many_colname The string name of a column in a data frame that corresponds to the "many"
specific items that will be aggregated.

aggregation_map
An aggregation map to be converted to a data frame.

all_byname 11

Value

For agg_table_to_agg_map(), an aggregation map. For agg_map_to_agg_table(),adata.frame,
probably at tibble.

Examples

bands <- tibble::tribble(~band, ~members,
"The Beatles”, "John",
"The Beatles”, "Paul”,
"The Beatles”, "George",
"The Beatles”, "Ringo",
Rejects duplicates and NA
"The Beatles”, "Ringo",
"The Beatles"”, NA,
"Rolling Stones”, "Mick”,
"Rolling Stones”, "Keith",
"Rolling Stones”, "Ronnie”,
"Rolling Stones”, "Bill"”,
"Rolling Stones”, "Charlie")
agg_map <- agg_table_to_agg_map(bands,

few_colname = "band",
many_colname = "members")
agg_map
agg_map_to_agg_table(agg_map, few_colname = "bands”, many_colname = "members")
all_byname Are all matrix elements TRUE ?
Description

Tells whether all elements in matrix a are true.

Usage
all_byname(a)

Arguments

a a matrix or list of matrices

Details

a can be a matrix or a list of matrices.

Value

TRUE if all elements of a are TRUE, FALSE otherwise

12 and_byname

Examples

all_byname(matrix(rep(TRUE, times = 4), nrow = 2, ncol = 2))
all_byname(matrix(c(TRUE, FALSE), nrow = 2, ncol = 1))

and_byname And "by name"

Description

Operands should be logical, although numerical operands are accepted. Numerical operands are
interpreted as FALSE when @ and TRUE for any other number.

Usage
and_byname(..., .summarise = FALSE)
Arguments
Operands to the logical and function.
.summarise Tells whether the operation should be accomplished across lists (FALSE) or down
lists (TRUE).
Value

Logical and applied to the operands.

Examples

and_byname (TRUE)
and_byname (FALSE)
and_byname(list(TRUE, FALSE), list(TRUE, TRUE), list(TRUE, TRUE), list(TRUE, TRUE))
ml <- matrix(c(TRUE, TRUE, TRUE, FALSE), nrow = 2, ncol = 2,
dimnames = list(c("r1"”, "r2"), c("c1”, "c2")))
m2 <- matrix(c(TRUE, FALSE, TRUE, TRUE), nrow = 2, ncol = 2,
dimnames = list(c("r1"”, "r2"), c("c1”, "c2")))
and_byname(m1, m1)
and_byname(m1, m2)
and_byname(list(m1, m1), list(ml, m1), list(m2, m2))
and_byname(list(m1, m1), list(ml, m1), list(m2, m2), .summarise = TRUE)

any_byname 13

any_byname Are any matrix elements TRUE?

Description

Tells whether any elements in matrix a are true.

Usage

any_byname (a)

Arguments

a a matrix or list of matrices

Details

a can be a matrix or a list of matrices.

Value

TRUE if any elements of a are TRUE, FALSE otherwise

Examples

any_byname(matrix(c(TRUE, FALSE), nrow = 2, ncol = 1))
any_byname(matrix(rep(FALSE, times = 4), nrow = 2, ncol = 2))

binaryapply_byname Apply a binary function "by name"

Description

If either a or b is missing or NULL, @ is passed to FUN in its place. Note that if either a and b are lists,
elements must be named the same. The names of list elements of a are applied to the output.

Usage

binaryapply_byname(
FUN,
a,
b,
.FUNdots = NULL,
match_type = c("all”, "matmult”, "none"),
set_rowcoltypes = TRUE,
.organize = TRUE

)

14 clean_byname

Arguments
FUN a binary function to be applied "by name" to a and b.
a the first operand for FUN.
b the second operand for FUN.
.FUNdots a list of additional named arguments passed to FUN.
match_type one of "all", "matmult", or "none". When both a and b are matrices, "all" (the

default) indicates that rowtypes of a must match rowtypes of b and coltypes of
a must match coltypes of b. If "matmult”, coltypes of a must match rowtypes of
b. If "none", neither coltypes nor rowtypes are checked.

set_rowcoltypes
tells whether to apply row and column types from a and b to the output. Set
TRUE (the default) to apply row and column types to the output. Set FALSE, to
not apply row and column types to the output.

.organize a boolean that tells whether or not to automatically complete a and b relative to
each other and sort the rows and columns of the completed matrices. Normally,
this should be TRUE (the default). However, if FUN takes over this responsibility,
set to FALSE.

Value

the result of applying FUN "by name" to a and b.

Examples

productnames <- c("p1”, "p2")

industrynames <- c("i1", "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(productnames, industrynames)) %>%
setrowtype("Products”) %>% setcoltype("Industries™)

Y <- matrix(1:4, ncol = 2, dimnames = list(rev(productnames), rev(industrynames))) %>%
setrowtype("Products”) %>% setcoltype(”Industries”)

sum_byname (U, Y)

binaryapply_byname(*+>, U, Y)

clean_byname Clean (delete) rows or columns of matrices that contain exclusively
clean_value

Description

Cleaning is performed when all entries in a row or column or both, depending on the value of
margin, are within +/- tol of clean_value. Internally, values are deemed within +/- of tol when
abs(x - clean_value) <= tol.

Usage

clean_byname(a, margin = c(1, 2), clean_value = @, tol = @)

colprods_byname 15

Arguments
a The matrix to be cleaned.
margin The dimension over which cleaning should occur, 1 for rows, 2 for columns, or
c(1, 2) for both rows and columns. Default is c(1, 2).
clean_value The undesirable value. Default is 0.
tol The tolerance with which any value is deemed equal to clean_value. Default
is 0.
Details

If there is concern about machine precision, you might want to call this function with tol = .Machine$double.eps.

When a row (when margin = 1) or a column (when margin = 2) contains exclusively clean_value
(within tol), the row or column is deleted from the matrix.

Value

A "cleaned" matrix, expunged of rows or columns that contain exclusively clean_value.

Examples
m <- matrix(c(-20, 1, -20, 2), nrow = 2, dimnames = list(c("r1"”, "r2"), c("c1”, "c2")))
m
m %>% clean_byname(margin = 1, clean_value = -20) # Eliminates -20, -20 row
Nothing cleaned, because no columns contain all @'s (the default clean_value).
m %>% clean_byname(margin = 2)

Also works with lists

list(m, m) %>% clean_byname(margin = 1, clean_value = -20)

Also works with data frames

DF <- data.frame(m = I(list()))

DFLLT,"m"]] <-m

DFLL2,"m"]] <- m

DF %>% clean_byname(margin = 1, clean_value = -20)

m2 <- matrix(c(-20, -20, @, -20, -20, @, -20, -20, -20), nrow = 3,
dimnames = list(c("r1", "r2", "r3"), c("c1”, "c2", "c3")))

m2

clean_byname(m2, margin = c(1,2), clean_value = -20)

DF2 <- data.frame(m2 = I(list()))

DF2[L1, "m2"]1] <- m2

DF2[[2, "m2"]] <- m2

DF2 %>% clean_byname(margin = c(1, 2), clean_value = -20)

colprods_byname Column products, sorted by name

Description

Calculates column products (the product of all elements in a column) for a matrix. An optional
rowname for the resulting row vector can be supplied. If rowname is NULL or NA (the default), the
row name is set to the row type as given by rowtype(a).

16

Usage

Arguments
a A matrix or data frame from which column products are desired.
rowname The Name of the output row containing column products.

Value

colprods_byname(a, rowname = NA)

a row vector of type matrix containing the column products of a.

Examples

library(dplyr)

M <- matrix(c(1:6), nrow = 2, dimnames = list(paste@("i", 1:2), pasted("c",

setrowtype("Industries”) %>% setcoltype(”Commodities”)
colprods_byname (M)
colprods_byname(M, rowname = "E.ktoe")
M %>% colprods_byname %>% rowprods_byname
This also works with lists
colprods_byname(list(M, M))
colprods_byname(list(M, M), rowname = "E.ktoe")
colprods_byname(list(M, M), rowname = NA)
colprods_byname(list(M, M), rowname = NULL)
DF <- data.frame(M = I(list()))
DFLLT,"M"]1]1 <- M
DFL[2,"M"]1] <- M
colprods_byname (DF$ML[11])
colprods_byname (DF$M)
colprods_byname (DF$M, "prods")
res <- DF %>% mutate(

cs = colprods_byname(M),

colsums_byname

3:1))) D%

cs2 = colprods_byname(M, rowname = "prod")
)
res$cs2
colsums_byname Column sums, sorted by name
Description

Calculates column sums for a matrix by premultiplying by an identity vector (containing all 1’s).
In contrast to colSums (which returns a numeric result), the return value from colsums_byname is
a matrix. An optional rowname for the resulting row vector can be supplied. If rowname is NA (the
default), the row name is set to the row type as given by rowtype(a). If rowname is set to NULL, the

row name is returned empty.

coltype 17

Usage

colsums_byname(a, rowname = NA)

Arguments
a A matrix or list of matrices from which column sums are desired.
rowname The name of the output row containing column sums.

Value

A row vector of type matrix containing the column sums of a.

Examples

library(dplyr)
colsums_byname (42)
m <- matrix(c(1:6), nrow = 2, dimnames = list(paste@("i", 1:2), pasteo("c"”, 3:1))) %>%
setrowtype("Industries”) %>% setcoltype(”Commodities”)
m
colsums_byname(m)
colsums_byname(m, rowname = "E.ktoe")
m %>%
colsums_byname() %>%
rowsums_byname ()
This also works with lists
colsums_byname(list(m, m))
colsums_byname(list(m, m), rowname = "E.ktoe")
colsums_byname(list(m, m), rowname = NA)
colsums_byname(list(m, m), rowname = NULL)
DF <- data.frame(m = I(list()))
DFLL1,"m"]1] <- m
DFLL2,"m"]] <- m
colsums_byname(DF$mLL1]11)
colsums_byname (DF $m)
colsums_byname (DF$m, "sums”
res <- DF %>% mutate(
cs = colsums_byname(m),

cs2 = colsums_byname(m, rowname = "sum”
)
res$cs2
coltype Column type
Description

Extracts column type of a.

18 compare_byname

Usage

coltype(a)

Arguments

a The object from which you want to extract column types.

Value

The column type of a.

Examples
commoditynames <- c("c1"”, "c2")
industrynames <- c("i1"”, "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames)) %>%
setrowtype(rowtype = "Commodities”) %>% setcoltype(”Industries”)

coltype(U)

This also works for lists

coltype(list(U,U))

compare_byname Compare matrix entries to a value

Description

Compares matrix entries to a value, returning a matrix of same size as a containing TRUE or FALSE
values as the result of applying compare_fun and val to all entries in a.

Usage
compare_byname(a, compare_fun = c("==", "!="_ "<" ‘"<=" ">=" ">") ' val = Q)
Arguments
a a matrix or list of matrices whose values are to be counted according to compare_fun
compare_fun the comparison function, one of "==", "!I=""<" "<="">=""or ">". Default is
"_:ll
val a single value against which entries in matrix a are compared. Default is 0.
Value

a logical matrix of same size as a containing TRUE where the criterion is met, FALSE otherwise

Examples

m <- matrix(c(@, 1, 2, 3, 4, @), nrow = 3, ncol = 2)
compare_byname(m, "<", 3)
compare_byname(list(m,m), "<", 3)

complete_and_sort

19

complete_and_sort

Complete matrices relative to one another and sort into same row,
column order

Description

Completes each matrix relative to each other, thereby assuring that both matrices have same row and
column names. Missing rows and columns (relative to the other matrix) are filled with fill. There-
after, rows and columns of the matrices are sorted such that they are in the same order (by name).
To complete rows of m1 relative to columns of m2, set the m2 argument to transpose_byname(m2).

Usage

complete_and_sort(

a,
br
fill =
margin
roworder
colorder

o,
= c(1,

Arguments

a
b
fill

margin

roworder

colorder

Details

2),

NA,
NA

The first matrix
The second (optional) matrix.
rows and columns added to a and b will contain the value fill (a double).

Specifies the dimension(s) of a and b over which completing and sorting will
occur

Specifies a custom ordering for rows of returned matrices. Unspecified rows are
dropped.

Specifies a custom ordering for columns of returned matrices. Unspecified

columns are dropped.

margin has nearly the same semantic meaning as in base: :apply(). For rows only, give 1; for
columns only, give 2; for both rows and columns, give c(1,2), the default value.

If only m1 is specified, rows of m1 are completed and sorted relative to columns of m1. If neither m1
nor m2 have dimnames, m1 and m2 are returned unmodified. If only one of m1 or m2 has dimnames,

an error is thrown.

Value

A named list containing completed and sorted versions of a and b.

20 complete_rows_cols

Examples

ml <- matrix(c(1:6), nrow=3, dimnames = list(c("r1"”, "r2", "r3"), c("c2", "c1")))
m2 <- matrix(c(7:12), ncol=3, dimnames = list(c("r3"”, "r4"), c("c2", "c3", "c4")))
complete_and_sort(m1)

complete_and_sort(m1, m2)

complete_and_sort(m1, m2, roworder = c("r3", "r2", "ri1"))

complete_and_sort(m1, m2, colorder = c("c4", "c3")) # Drops un-specified columns
complete_and_sort(m1l, m2, margin = 1)

complete_and_sort(ml, m2, margin = 2)

complete_and_sort(m1, t(m2))

complete_and_sort(ml, t(m2), margin = 1)

complete_and_sort(ml, t(m2), margin = 2)

v <- matrix(1:6, ncol=2, dimnames=list(c("r3"”, "r1", "r2"), c("c2", "c1")))
complete_and_sort(v, v)

Also works with lists

complete_and_sort(list(ml,m1), list(m2,m2))

complete_rows_cols Complete rows and columns in one matrix relative to another

Description

"Completing" rows and columns means that a contains a union of rows and columns between a and
mat, with missing data represented by the value for fill (@, by default), fillrow, or fillcol.

Usage

complete_rows_cols(
a = NULL,
mat = NULL,
fill = o,
fillrow = NULL,
fillcol = NULL,
margin = c(1, 2)

)
Arguments

a A matrix or list of matrix objects to be completed. a can be Matrix objects,
too.

mat A matrix or Matrix from which dimnames will be extracted for the purposes
of completing a with respect to mat.

fill Rows and columns added to a will contain the value fill. (Default is 0.)

fillrow A row vector of type matrix with same column names as a. Any rows added to

a will be fillrow. If non-NULL, fillrow takes precedence over both fillcol
and fill in the case of conflicts.

complete_rows_cols 21

fillcol A column vector of type matrix with same row names as a. Any columns added
to a will be fillcol. If non-NULL, fillcol takes precedence over fill in the
case of conflicts.

margin Specifies the subscript(s) in a over which completion will occur margin has
nearly the same semantic meaning as in base: :apply () For rows only, give 1;
for columns only, give 2; for both rows and columns, give c(1,2), the default
value.

Details

Note that complete_rows_cols(matl, mat2) and complete_rows_cols(mat2, mat1) are not
guaranteed to have the same order for rows and columns. (Nor are the values in the matrix guaran-
teed to have the same positions.)

If dimnames(mat) is NULL, a is returned unmodified.
If either a or mat are missing names on a margin (row or column), an error is given.

When a is non-NULL, a is named, and mat is NULL (the default), a is completed relative to itself,
meaning that a will be made square, containing the union of row and column names from a. Under
these conditions, no warning is given.

If mat is non-NULL and dimnames of mat cannot be determined (because, for example, mat doesn’t
have dimnames), a is completed relative to itself and a warning is given.

All added rows and columns will be created from one of the fillx arguments. When conflicts arise,
precedence among the fill* arguments is fillrow then fillcol then fill.
Value

A modified version of a possibly containing additional rows and columns whose names are ob-
tained from mat and whose values are obtained from fillrow, fillcol or fill (in that order of

preference).

Examples
ml <- matrix(c(1:6), nrow=3, dimnames = list(c("r1", "r2", "r3"), c("c1”, "c2")))
ml
m2 <- matrix(c(7:12), ncol=3, dimnames = list(c("r2", "r3"), c("c2", "c3", "c4")))
m2

complete_rows_cols(ml, m2) # Adds empty column c4
complete_rows_cols(ml, t(m2)) # Creates r2, r3 columns; c2, c3, c4 rows
complete_rows_cols(ml, m2, margin = 1) # No changes because r2 and r3 already present in mi
complete_rows_cols(ml, m2, margin = 2) # Adds empty columns c3 and c4
complete_rows_cols(ml, t(m2), margin = 1) # Adds empty rows c2, c3, c4
complete_rows_cols(m1, m2, fill = 100) # Adds columns c3 and c4 with 100's
complete_rows_cols(ml, ml1) # Nothing added, because everything already present
complete_rows_cols(ml, t(m1)) # Adds empty c1, c2 rows; Adds empty ri1, r2, r3 columns
Same as previous. With missing matrix, complete relative to transpose of ml.
complete_rows_cols(m1)
Adds rows ri10, ri11; cols c1@, cl11
complete_rows_cols(ml, matrix(@, nrow = 2, ncol = 2,

dimnames = list(c("r10", "r11"), c("c10", "c11"))))
Also works with lists

22 count_vals_byname

complete_rows_cols(a = list(m1,m1))
complete_rows_cols(a = list(ml,m1), mat = list(m2,m2))
No changes because r2, r3 already present in m1l
complete_rows_cols(a = list(ml,m1), mat = list(m2,m2), margin = 1)
complete_rows_cols(a = list(ml,m1), mat = list(m2,m2), margin = 2)
complete_rows_cols(a = list(ml,ml1),

mat = RCLabels::make_list(matrix(o,

nrow = 2,
ncol = 2,
dimnames = list(c("r10", "r11"),

c("c1e0", "c11"))),
n =2, lenx = 1))

fillrow or fillcol can be specified
a <- matrix(c(11, 12, 21, 22), byrow = TRUE, nrow = 2, ncol = 2,

dimnames = list(c("r1”, "r2"), c("c1”, "c2")))
b <- matrix(c(1:6), byrow = TRUE, nrow = 3, ncol = 2,

dimnames = list(c("r1"”, "r2", "r3"), c("c1”, "c2")))
fillrow <- matrix(c(31, 32), byrow = TRUE, nrow = 1, ncol = 2,

dimnames = list("r42", c("c1", "c2")))

complete_rows_cols(a = a, mat = b, fillrow = fillrow)

count_vals_byname Count the number of matrix entries that meet a criterion

Description

Expressions can be written in a natural way such as count_vals_byname(m, "<=", 1).

Usage
count_vals_byname(
a,
COmpare_fun = C(“::“, II!:II, II<II’ ”<:1I’ II>:II, ”>II),
val = 0@
)
Arguments
a A matrix or list of matrices whose values are to be counted according to compare_fun.
compare_fun The comparison function, one of "==", "I=", "<", "<=", ">", or ">=". Default is
n__mn
val The value against which matrix entries are compared. Default is 0.
Details

Either a single matrix or a list of matrices can be given as the a argument. compare_fun can be
specified as a string ("!=") or as a back-quoted function (* !=").

count_vals_incols_byname 23

Value

An integer indicating the number of entries in a that meet the specified criterion

Examples

m <- matrix(c(@, 1, 2, 3, 4, @), nrow = 3, ncol = 2)
count_vals_byname(m) # uses defaults: compare_fun = "==" and val = @
count_vals_byname(m, compare_fun = "!=")

count_vals_byname(m, compare_fun = ~!=")

Write expressions in a natural way

count_vals_byname(m, "<=", 1)

Also works for lists

count_vals_byname(list(m,m), "<=", 1)

count_vals_incols_byname
Count the number of matrix entries in columns that meet a criterion

Description

Expressions can be written in a natural way such as count_vals_incols_byname(m, "<=", 1).

Usage
count_vals_incols_byname(
a,
COmpare_fun = C(“::“, II!:”, II<II’ ll<:1ﬁ’ II>:II, ll>ll),
val = 0@
)
Arguments
a a matrix or list of matrices whose values are to be counted by columns according
to compare_fun
compare_fun the comparison function, one of "==", "I=""<" "<="">" or ">=". Default is
n__mn
val the value against which matrix entries are compared. Default is 0.
Details
Either a single matrix or a list of matrices can be given as the a argument. compare_fun can be
specified as a string ("!=") or as a back-quoted function (* !=").
Value

an matrix with a single row indicating the number of entries in a that meet the specified criterion
in each column of a

24 count_vals_inrows_byname

Examples

m <- matrix(c(@, 1, 2, 3, 4, @), nrow = 3, ncol = 2)

count_vals_incols_byname(m) # uses defaults: compare_fun = "==" and val = @
count_vals_incols_byname(m, compare_fun = "!="

count_vals_incols_byname(m, compare_fun = ~!=7)

Write expressions in a natural way

count_vals_incols_byname(m, "<=", 1)

Also works for lists

count_vals_incols_byname(list(m,m), "<=", 1)

count_vals_inrows_byname
Count the number of matrix entries in rows that meet a criterion

Description

Expressions can be written in a natural way such as count_vals_inrows_byname(m, "<=", 1).

Usage
count_vals_inrows_byname(
a ’
Compare _Fun = C(”::H II':II H<II I1<:H II>:II H>II)
— ’ . ’ ’) ’ ’
val = @
)
Arguments
a a matrix or list of matrices whose values are to be counted by rows according to
compare_fun
compare_fun the comparison function, one of "==", "I=", "<" "<="_">" or ">=". Default is
nm__mn
val the value against which matrix entries are compared. Default is 0.
Details
Either a single matrix or a list of matrices can be given as the a argument. compare_fun can be
specified as a string ("!=") or as a back-quoted function (* !=").
Value

an matrix with a single column indicating the number of entries in a that meet the specified criterion
in each row of a

create_colvec_byname 25

Examples

m <- matrix(c(@, 1, 2, 3, 4, @), nrow = 3, ncol = 2)

count_vals_inrows_byname(m) # uses defaults: compare_fun = "==" and val = 0
count_vals_inrows_byname(m, compare_fun = "!=")

count_vals_inrows_byname(m, compare_fun = ~!=7)

Write expressions in a natural way

count_vals_inrows_byname(m, "<=", 1)

Also works for lists

count_vals_inrows_byname(list(m,m), "<=", 1)

create_colvec_byname Create column vectors from data

Description

This function takes data in the .dat and creates column vectors.

Usage

create_colvec_byname (
.dat,
dimnames = NA,
colname = NA,

matrix_class = c("matrix”, "Matrix")
)
Arguments

.dat Data to be converted to column vectors.

dimnames The dimension names to be used for creating the column vector, in a list format,
or as a data frame column containing a list of the dimension names to be used
for each observation.

colname The name of the column of the colvector.

matrix_class One of "matrix" or "Matrix". "matrix" creates a base::matrix object with
the matrix() function. "Matrix" creates a Matrix: :Matrix object using the
matsbyname: :Matrix() function. This could be a sparse matrix. Default is
"matrix".

Details

The row and column names in the resulting column vector are taken from the names of .dat and
colname. If set, dimnames overrides the names of .dat and colname.

This function is a "byname" function that can accept a single number, a vector, a list, or a data frame
in .dat.

Row types and column types are taken from the row type and column type attributes of .dat.

26 create_matrix_byname

Value

A column vector, a list of column vectors, or a data frame column of column vectors, depending on
the value of .dat and class.

Examples

Works with single numbers
create_colvec_byname(c(r1 = 1) %>% setrowtype("rt") %>% setcoltype(”ct"),
colname = "r1")
Works with vectors
create_colvec_byname(c(r1 =1, r2 = 2), colname = "c1")
Works with a list
create_colvec_byname(list(c(r1 =1, r2 = 2), c(R1 = 3, R2 = 4, R3 =5)),
colname = list("c1"”, "C1"))
Works in a tibble, too.
(Must be a tibble, not a data frame, so that names are preserved.)
dat <- list(c(rl =1, r2 = 2),
c(R1 = 2, R2 = 3),
c(rt =1, r2=2,r3=3,r4d=4, r5=5,r6==6))

cnms <- list("c1", "C1", "c1")
df1 <- tibble::tibble(dat, cnms)
df1

df1 <- df1 %>%
dplyr::mutate(
colvec_col = create_colvec_byname(dat, colname = cnms)
)
df1$colvec_col[[1]]
df1$colvec_col[[2]]
df1$colvec_col[[3]]

create_matrix_byname Create a "byname" matrix from a vector

Description

This function creates a "byname" matrix, or list of matrices, from .dat, depending on the input
arguments. This function is similar to matrix(), but with "byname" characteristics.

Usage

create_matrix_byname (
.dat,
nrow,
ncol,
byrow = FALSE,
dimnames,
matrix_class = c("matrix"”, "Matrix")

create_rowvec_byname

Arguments

.dat

nrow

ncol

byrow

dimnames

matrix_class

Details

27

The data to be used to create the matrix, in a list format, or as a data frame
column containing a list of the data to be used for each observation.

The number of rows to be used to create the matrix, in a list format, or as a
data frame column containing a list of the number of rows to be used for each
observation.

The number of columns to be used to create the matrix, in a list format, or as
a data frame column containing a list of the number of columns to be used for
each observation.

The argument stating whether the matrix should be filled by rows or by columns
(FALSE by column, TRUE by row), in a list format, or as a data frame column
containing a list of the byrow argument for each observation. Default is FALSE.

The dimension names to be used for creating the matrices, in a list format, or
as a data frame column containing a list of the dimension names to be used for
each observation.

One of "matrix" or "Matrix". "matrix" creates a base::matrix object with
the matrix() function. "Matrix" creates a Matrix: :Matrix object using the
matsbyname: :Matrix() function. This could be a sparse matrix. Default is
"matrix".

Row and column names are taken from the dimnames argument.

Any row or column type information on .dat is preserved on output.

The created object(s) can be of type base: :matrix or Matrix: :Matrix, the latter enables sparse
objects to save both memory and disk.

Value

A matrix, list of matrices, or column in a data frame, depending on the input arguments.

Examples

create_matrix_byname(c(1, 2), nrow = 2, ncol =1,

dimnames = list(c("r1"”, "r2"), "c1"))

create_matrix_byname(list(1, 2), nrow = list(1, 1), ncol = list(1,1),

dimnames = list(list("r1"”, "c1"), list("R1", "C1")))

create_rowvec_byname Create row vectors from data

Description

This function takes data in the .dat and creates row vectors.

28 create_rowvec_byname

Usage

create_rowvec_byname (
.dat,
dimnames = NA,
rowname = NA,

matrix_class = c("matrix"”, "Matrix")
)
Arguments

.dat Data to be converted to row vectors.

dimnames The dimension names to be used for creating the row vector, in a list format, or
as a data frame column containing a list of the dimension names to be used for
each observation.

rowname The name of the row of the row vector.

matrix_class One of "matrix" or "Matrix". "matrix" creates a base::matrix object with
the matrix() function. "Matrix" creates a Matrix: :Matrix object using the
matsbyname: :Matrix() function. This could be a sparse matrix. Default is
"matrix".

Details

The row and column names in the resulting row vector are taken from rowname and the names of
.dat. If set, dimnames overrides rowname and the names of .dat.

Row types and column types are taken from the row type and column type attributes of .dat.

This function is a "byname" function that can accept a single number, a vector, a list, or a data frame
in .dat.

Value

A row vector, a list of row vectors, or a data frame column of row vectors, depending on the values
of .dat and class.

Examples

Works with single numbers
create_rowvec_byname(c(cl = 1) %>% setrowtype("rt") %>% setcoltype(”ct"), rowname = "r1")
Works with vectors
create_rowvec_byname(c(cl = 1, ¢c2 = 2), rowname = "r1")
Works with a list
create_rowvec_byname(list(c(cl =1, c2 = 2), c(C1 = 3, C2 = 4, C3 =5)),
rowname = list("r1", "R1"))
Works in a tibble, too.
(Must be a tibble, not a data frame, so that names are preserved.)
dat <- list(c(cl 1,
c(C1 =2, C2 = 3),
c(cl =1, c2=2, c3 =3, cd=14, c5 =5, c6 =6))
rnms <- list("r1"”, "R1", "r1")

cumapply_byname 29

df1 <- tibble::tibble(dat, rnms)
df1
df1 <- df1 %>%
dplyr: :mutate(
rowvec_col = create_rowvec_byname(dat, rowname = rnms)
)
df1$rowvec_col[[1]]
df1$rowvec_col[[2]]
df1$rowvec_col[[3]1]

cumapply_byname Apply a function cumulatively to a list of matrices or numbers

Description

FUN must be a binary function that also accepts a single argument. The result is a list with first
element FUN(a[[1]]). For i>=2, elements are FUN(a[[i]], out[[i-1]]), where out is the
result list.

Usage
cumapply_byname(FUN, a)

Arguments

FUN the function to be applied

a the list of matrices or numbers to which FUN will be applied cumulatively
Details

naryapply_byname() and cumapply_byname() are similar. Their differences can be described by
considering a data frame. naryapply_byname() applies FUN to several columns (variables) of the
data frame. For example, sum_byname() applied to several variables gives another column con-
taining the sums across each row of the data frame. cumapply_byname () applies FUN to successive
entries in a single column. For example sum_byname () applied to a single column gives the sum of
all numbers in that column.

Value

a list of same length as a containing the cumulative application of FUN to a

Examples

cumapply_byname(sum, list(1, 2, 3, 4))

cumapply_byname (sum_byname, list(1, 2, 3, 4))
cumapply_byname(prod, list(1, 2, 3, 4))

cumapply_byname (hadamardproduct_byname, list(1, 2, 3, 4))

30 cumprod_byname

cumprod_byname Cumulative element-product that respects row and column names

Description

Provides cumulative element-products along a list or column of a data frame. If a is a single number,
a is returned. If a is a list of numbers, a list representing the cumulative product of the numbers
is returned. If a is a single matrix, a is returned. If a is a list of matrices, a list representing the
cumulative product of the matrices is returned. In this case, each entry in the returned list is product
"by name," such that row and column names of the matrices are respected.

Usage

cumprod_byname (a)

Arguments
a A number, list of numbers, matrix or list of matrices for which cumulative ele-
ment product is desired.
Details

This function respects groups if a is a variable in a data frame.

Value

A single number, list of numbers, a single matrix, or a list of matrices, depending on the nature of
a.

Examples

cumprod_byname(list(1, 2, 3, 4, 5))

ml <- matrix(c(1), nrow = 1, ncol = 1, dimnames = list("r1", "c1")) %>%
setrowtype("row”) %>% setcoltype(”col")

m2 <- matrix(c(2), nrow = 1, ncol = 1, dimnames = list("r2", "c2")) %>%
setrowtype("row”) %>% setcoltype(”col")

m3 <- matrix(c(3), nrow = 1, ncol = 1, dimnames = list("r3", "c3")) %>%

setrowtype("row"”) %>% setcoltype(”col™)
cumprod_byname(list(m1, m2, m3))

cumsum_byname 31

cumsum_byname Cumulative sum that respects row and column names

Description

Provides cumulative sums along a list or column of a data frame. If a is a single number, a is
returned. If a is a list of numbers, a list representing the cumulative sum of the numbers is returned.
If a is a single matrix, a is returned. If a is a list of matrices, a list representing the cumulative sum
of the matrices is returned. In this case, each entry in the returned list is sum "by name," such that
row and column names of the matrices are respected.

Usage

cumsum_byname (a)

Arguments
a A number, list of numbers, matrix or list of matrices for which cumulative sum
is desired.
Details

If cumulative sums are desired in the context of a data frame, groups in the data frame are respected
if mutate is used. See examples.

Value

A single number, list of numbers, a single matrix, or a list of matrices, depending on the nature of

a.
Examples

library(dplyr)

library(tibble)

ml <- matrix(c(1), nrow = 1, ncol = 1, dimnames = list("r1", "c1")) %>%
setrowtype("row”) %>% setcoltype(”col™)

m2 <- matrix(c(2), nrow = 1, ncol = 1, dimnames = list("r2", "c2")) %>%
setrowtype("row”) %>% setcoltype(”col")

m3 <- matrix(c(3), nrow = 1, ncol = 1, dimnames = list("r3", "c3")) %>%

setrowtype("row”) %>% setcoltype(”col")

cumsum_byname(list(m1, m2, m3))

Groups are respected in the context of mutate.

tibble(grp = c("A", "A", "B"), m = list(ml, m2, m3)) %>% group_by(grp) %>%
mutate(m2 = cumsum_byname(m))

32 difference_byname

difference_byname Name-wise subtraction of matrices

Description

Name-wise subtraction of matrices

Usage

difference_byname(minuend, subtrahend)

Arguments
minuend matrix or constant
subtrahend matrix or constant
Performs a union and sorting of row and column names prior to differencing.
Zeroes are inserted for missing matrix elements.
Value

A matrix representing the name-wise difference between minuend and subtrahend

Examples
library(dplyr)
difference_byname(100, 50)
commoditynames <- c("c1"”, "c2")
industrynames <- c("i1", "i2")

U <- matrix(1:4, ncol = 2, dimnames = list(commoditynames, industrynames)) %>%
setrowtype("Commodities”) %>% setcoltype(”Industries”)

G <- matrix(rev(1:4), ncol = 2, dimnames = list(rev(commoditynames), rev(industrynames))) %>%
setrowtype(”Commodities”) %>% setcoltype("”Industries”)

U - G # Non-sensical. Row and column names not respected.

difference_byname(U, G) # Row and column names respected! Should be all zeroes.

difference_byname(100, U)

difference_byname(10, G)

difference_byname(G) # When subtrahend is missing, return minuend (in this case, G).

difference_byname(subtrahend = G) # When minuend is missing, return - subtrahend (in this case, -G)

This also works with lists

difference_byname(list(100, 100), list(50, 50))

difference_byname(list(U,U), list(G,G))

DF <- data.frame(U = I(list()), G = I(list()))

DFCL1,"U"]] <- U

DFCL2,"U"]1] <- U

DFLL1,"G"1]1 <- G

DFL[2,"G"]] <- G

difference_byname(DFU, DFG)

DF %>% mutate(diffs = difference_byname(U, G))

eigenvalues_byname 33

eigenvalues_byname Calculate eigenvalues of a matrix

Description

Calculate the eigenvalues of a matrix or a list of matrices.

Usage

eigenvalues_byname(a)

Arguments

a A matrix or list of matrices.

Details

This function pairs with eigenvectors_byname(); the first value of the result is the eigenvalue
for the eigenvector reported in the first column of the result from eigenvectors_byname(). The
second value of the result is the eigenvalue for the eigenvector reported in the second column of the
result from eigenvectors_byname(). Etc.

Internally, this function uses base: :eigen(only.values = TRUE).

complete_rows_cols() is called prior to calculating the eigenvalues.

Value

A vector of eigenvalues.

Examples

m <- matrix(c(4, 6, 10,
3, 10, 13,
-2, -6, -8), byrow = TRUE, nrow = 3, ncol = 3,
dimnames = list(c("p1"”, "p2", "p3"), c("p1", "p2", "p3")))
m
eigenvalues_byname(m)
eigenvalues_byname(list(m, 2*m))
DF <- tibble::tibble(m_col = list(m, 2*m)) %>%
dplyr: :mutate(
eigen_col = eigenvalues_byname(m_col)
)
DF$eigen_col[[1]1]
DF$eigen_col[[2]1]

34 eigenvectors_byname

eigenvectors_byname Calculate eigenvectors of a matrix

Description

Calculate the eigenvectors of a matrix or a list of matrices.

Usage

eigenvectors_byname(a)

Arguments

a A matrix or list of matrices.

Details

This function pairs with eigenvalues_byname(); the first column of the resulting matrix is the
eigenvector for the first eigenvalue reported by eigenvalues_byname(). The second column of the
resulting matrix is the eigenvector for the second eigenvalue reported by eigenvalues_byname().
Etc.

Internally, this function uses base: :eigen().

complete_rows_cols() is called prior to calculating the eigenvectors.

Value

A matrix whose columns are the eigenvectors of a.

Examples

m <- matrix(c(4, 6, 10,
3, 10, 13,
-2, -6, -8), byrow = TRUE, nrow = 3, ncol = 3,
dimnames = list(c("p1"”, "p2", "p3"), c("p1", "p2", "p3")))
m
eigenvectors_byname(m)
eigenvectors_byname(list(m, 2xm))
DF <- tibble::tibble(m_col = list(m, 2*m)) %>%
dplyr: :mutate(
eigen_col = eigenvectors_byname(m_col)
)
DF$eigen_col[[1]1]
DF$eigen_col[[2]1]

elementapply_byname 35

elementapply_byname Apply a function to an element of a matrix specified by rows and
columns

Description

FUN is applied to the element of a that is specified by row and col.

Usage

elementapply_byname(FUN, a, row, col, .FUNdots = NULL)

Arguments
FUN a unary function to be applied to specified rows and columns of a
a the argument to FUN
row the row name of the element to which FUN will be applied
col the column name of the element to which FUN will be applied
.FUNdots a list of additional arguments to FUN. (Default is NULL.)

Details

row and col can be any of row or column names or integer indices or a mix of both.

Value

a, after FUN has been applied to the element at row and col

Examples

divide <- function(x, divisor){
x/divisor
3
m <- matrix(c(1:4), nrow = 2, ncol = 2, dimnames = list(c("r1", "r2"), c("c1”, "c2"))) %>%
setrowtype("row”) %>% setcoltype("col")
elementapply_byname(divide, a = m, row = 1, col = 1, .FUNdots = list(divisor = 2))
elementapply_byname(divide, a = m, row = 1, col = 2, .FUNdots = list(divisor = 10))
elementapply_byname(divide, a = m, row = "r2", col = "c2", .FUNdots = list(divisor = 100))

36 equal_byname

equal_byname Compare two matrices "by name" for equality

Description

If operands are matrices, they are completed and sorted relative to one another prior to comparison.

Usage
equal_byname(..., .summarise = FALSE, tol = 0)
Arguments
Operands to be compared.
.summarise Tells whether the operation should be accomplished across lists (FALSE) or down
lists (TRUE).
tol A double that tells how precisely equal the values of a and b must be. Default is
0.
Details

Comparisons are made by equal _matrix_or_Matrix(a, b, tolerance = abs(tol)) so that vari-
ations among numbers within tol will still return TRUE.

If EXACT comparison is needed, use identical_byname (), which compares using identical(a,
b).

tol should be a single value that applies to all items in

Value

TRUE iff all information is equal, including row and column types and row and column names and
entries in the matrices.

Examples
a <- matrix(1:4, nrow = 2)
b <- matrix(1:4, nrow = 2)

equal_byname(a, b)

equal_byname(a, b + 1e-100)

identical_byname(a, b + 1e-100)

a <- a %>% setrowtype("Industries"”) %>% setcoltype(”Commodities”)
equal_byname(a, b) # FALSE because a has row and column types, but b does not.
b <- b %>% setrowtype(”"Industries”) %>% setcoltype("Commodities")
equal_byname(a, b)

dimnames(a) <- list(c("i1"”, "i2"), c("c1", "c2"))

dimnames(b) <- list(c("c1", "c2"), c("i1", "i2"))

equal_byname(a, b) # FALSE, because row and column names are not equal
dimnames(b) <- dimnames(a)

equal_byname(a, b)

exp_byname 37

exp_byname Exponential of matrix elements

Description

Gives the exponential of all elements of a matrix or list of matrices

Usage

exp_byname(a)

Arguments

a a matrix of list of matrices

Value

M with each element replaced by its exponential

Examples

exp_byname (1)
m <- matrix(c(log(10),log(1),
log(1),log(100)),
byrow = TRUE, nrow = 2, ncol = 2,
dimnames = list(paste@("i"”, 1:2), paste@(”c", 1:2))) %>%
setrowtype("Industry”) %>% setcoltype(”Commodity")
m
exp_byname (m)

fractionize_byname Compute fractions of matrix entries

Description

This function divides all entries in a by the specified sum, thereby "fractionizing" the matrix.

Usage

fractionize_byname(a, margin, inf_becomes = .Machine$double.xmax)

38 geometricmean_byname

Arguments
a The matrix to be fractionized.
margin If 1 (rows), each entry in a is divided by its row’s sum. If 2 (columns), each
entry in a is divided by its column’s sum. If c(1,2) (both rows and columns),
each entry in a is divided by the sum of all entries in a.
inf_becomes A value to be substitute for any Inf produced by division. Defaultis .Machine$double.xmax.
Another reasonable value is Inf. Set to NULL to disable substitution. inf_becomes
is passed to hatinv_byname().
Value

A fractionized matrix of same dimensions and same row and column types as a.

Examples

M <- matrix(c(1, 5,
4, 5),
nrow = 2, ncol = 2, byrow = TRUE,
dimnames = list(c("p1”, "p2"), c("il1", "i2"))) %>%
setcoltype(”"Products”) %>% setrowtype("Industries”)
fractionize_byname(M, margin = c(1,2))
fractionize_byname(M, margin = 1)
fractionize_byname(M, margin = 2)

geometricmean_byname Name- and element-wise geometric mean of two matrices.

Description

Gives the geometric mean of corresponding